
LA-UR-04-0561 1

QUIC-PLUME Theory Guide
Last updated: 1-26-04

Michael D. Williams, Michael J. Brown, Balwinder Singh, and David Boswell
Los Alamos National Laboratory

Infrastructure and Energy Analysis, Group D-4, MS F604
Los Alamos, NM USA 87545

Introduction

The Quick Urban & Industrial Complex (QUIC) Dispersion Modeling System is intended
for applications where dispersion of airborne contaminants released near buildings must
be computed quickly.  QUIC is composed of a wind model, QUIC-URB, a dispersion
model, QUIC-PLUME, and a graphical user interface, QUIC-GUI.  This document
describes the QUIC-PLUME model equations, the special considerations needed for
urban applications, and assumptions made in the turbulence parameterizations.
Companion documents describe the QUIC-URB model (Pardyjak, 2004), how to run
QUIC-PLUME in standalone mode (Williams, 2004), and how to use the QUIC-GUI
(Boswell and Brown, 2004).

Model Overview

Buildings produce complex flows that pose difficult challenges to dispersion modelers.
The QUIC-URB model uses an empirical-diagnostic approach to compute a mass
consistent 3D wind field around buildings (e.g., Pardyjak and Brown, 2001).  The QUIC-
PLUME model is a Lagrangian dispersion model that uses the mean wind fields from
QUIC-URB and turbulent winds computed internally using the Langevin random walk
equations.  Gradients in the wind fields are used to estimate the turbulence parameters.

The QUIC-PLUME code does not use the traditional three term random-walk equation
that has been used successfully for boundary layer flow problems. Due to the horizontal
inhomogeneity of the flow around buildings, the code uses more terms and a unique
coordinate rotation approach in order to account for lateral and vertical mean motions
and horizontal gradients in turbulence parameters.  The code has undergone a series of
changes from its initial formulation, including: (1) calculating dissipation with a revised
method, (2) computing turbulence parameters from local gradients, 3) adding two
additional drift terms, and (4) developing a new non-local mixing formulation. These last
two changes significantly improved model performance and are shown at the end of this
document.
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Lagrangian particle physics in inhomogeneous turbulence in the surface layer

Lagrangian particle models describe dispersion by simulating the releases of particles and
moving them with an instantaneous wind composed of a mean wind plus a turbulent
wind. The equations that describe the positions of particles are:

x = xp + UDt +
¢ u p + ¢ u 

2
Dt ,

y = yp + VDt +
¢ v p + ¢ v 

2
Dt ,

and

z = z p + WDt +
¢ w p + ¢ w 

2
Dt ,

where x, y, and z are the current position coordinates of the particle and the subscript p
refers to the previous positions. U, V, and W are the mean winds while ¢ u , ¢ v , and ¢ w  are
the fluctuating components of the instantaneous wind and Dt  is the time step. Mean
winds are winds averaged over a sufficient length of time (usually 10 minutes to an hour)
to remove the effects of random fluctuations.

The fluctuating components of the instantaneous winds are calculated from:

¢ u = ¢ u p + du ,

¢ v = ¢ v p + dv ,

and,

¢ w = ¢ w p + dw .

Generally, the equations for du, dv, and dw are quite complicated:

† 
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Coe
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but dramatic simplifications can be made if the mean vertical wind W is zero, the mean
horizontal winds are uniform and the coordinate system is rotated so that the mean wind
is in the x-direction (V=W=0). Under these circumstances (Rodean, 1996, pages 43-44),
the expressions for du, dv, and dw are:

† 

du =
-Coe

2
l11 u -U( ) + l13w[ ] +

∂U
∂z

w +
1
2

∂t13

∂z
Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

dt +

∂t11

∂z
l11 u -U( ) + l13w[ ] +

∂t13

∂z
l13 u -U( ) + l33w[ ]

Ï 
Ì 
Ó 

¸ 
˝ 
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w
2

dt +

Coedt( )
1

2 dW1(t),

† 

dv = -
Coe

2
l22v( ) +

∂t22

∂z
l22v( ) w

2
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˚ 
˙ dt + Coedt( )

1
2 dW2 (t),

and,

† 
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1

2 dW3 (t),

with,

† 

l11 = t11 -t13
2

t 33

Ê 
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Á 

ˆ 

¯ 
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-1

,

l22 = t 22
-1,

l13 = t13 - t11
t 33

t13

Ê 
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ˆ 
¯ 
˜ 

-1

,

l33 = t33 -
t13

2

t11

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

-1

,

t11 = s u
2 ,

t22 = s v
2 ,

t33 = sw
2 ,

u = U + ¢ u ,
v = V + ¢ v = ¢ v ,

and,
w = W + ¢ w = ¢ w .

The constant Co,  is called the universal constant for the Lagrangian structure function.
Note that the t ’s refer to kinematic shear stresses, i.e., shear stress divided by density.  A
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variety of investigators have estimated a plethora of values for Co ranging from 1.6 to 10
and we have chosen a value of 5.7 (Rodean, 1996, page 8). e  is the mean rate of
turbulence kinetic energy dissipation. dW1(t) , dW2 (t) , and dW3(t)  are uncorrelated,
normally distributed variables with means of zero and standard deviations of 1.

Most random particle codes use an even simpler form of the equations as exemplified for
the vertical component in the following expression:

the first term on the right is called the memory term, the second term is the drift term and
the third term is the random acceleration term.

In the surface stress layer, we have the following parameterizations:

u* = kDz ∂U
∂z

,

su = 2u*,
sv = 2u*,
sw = 1.3u*,

e =
u*

3

k z + z0( )
,

and,

t13 = t uw = u*
2 1-

z
h

Ê 
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ˆ 
¯ 
˜ 

3
2

ª u*
2 ,

with z0  the roughness length and k the von Karman constant (chosen as 0.4) (Rodean,
1996, pages 59-64).

The initial values of ¢ u , ¢ v , and ¢ w  are given by:

¢ u = s udW1,
¢ v = s vdW2 ,

and,
¢ w = s wdW3.† 

dw = -
Coe

2
l33wdt +

1
2

1+ l33w
2( )∂t 33

∂z
dt

† 

+ Coedt( )
1

2 dW3 (t),
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Treatment of turbulence associated with walls and rooftops

The presence of walls and rooftops will produce gradients in the local wind that will
induce turbulence. We deal with these effects by using a local coordinate system that has
the u component aligned with the mean wind and a w normal to the mean wind in the
direction with the largest increase in the wind speed. The required axes rotations are
shown below.

The first rotation produces the x’ and y’ axis through rotation through the angle 

† 

y  where

† 
† 

y = arctan v
u

Ê 

Ë 
Á 

ˆ 

¯ 
˜ .

The second rotation produces the x’’ and z’’ axes by rotation of the x’ and z’ axes
through the angle 

† 

f  where

† 

f = arctan w
u2 + v2

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ .

The third rotation produces the z’’’ and y’’’ axes from the z’’ and y’’ axes through
rotation through the angle 

† 

W. The angle 

† 

W is calculated by optimizing the rate of change
of the wind speed with respect to distance along the z’’’ axis,
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∂u' ' '
∂z' ' '
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Fig. 1. The three rotations used in the wind-following coordinate system.
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which may result in a minimum rather than a maximum. If the above equation results in a
minimum the appropriate value is found by replacing 

† 

W with 

† 

W + p .

Unit vectors in the triply-rotated system are described by:

† 

ix '' ' = cosy cosfix + siny cosfiy + sinfiz ,

† 

iy '' ' = - cosy sinf sinW + siny cosW( )ix - siny sinf sinW - cosy cosW( )iy -cosf sinWiz,
and,

† 

iz' '' = siny sinW -cosy sinf cosW( )ix - cosy sinW + siny sinf cosW( )iy + cosf cosWiz .

We describe transformations from the rotated system to the unrotated system with the
equations:

† 

u = u' ' 'a1 + v ' ' 'a 2 + w ' ''a 3 ,

† 

v = u' ' 'b1 + v '' 'b2 + w ' ' 'b3 ,
and,

† 

w = u' ' 'g1 + v '' 'g 2 + w' ' 'g 3 ,
where,

† 

a1 = cosy cosf ,

† 

a2 = - siny cosW - cosy sinf sinW,

† 

a3 = siny sinW -cosy sinf cosW ,

† 

b1 = siny cosf ,

† 

b2 = cosy cosW - siny sinf sinW ,

† 

b3 = -cosy sinW - siny sinf cosW,

† 

† 

g1 = sinf ,

† 

g 2 = cosf sinW,
and,

† 

g 3 = cosf cosW.

We describe the transformations from the unrotated system to the rotated system in a
similar fashion:

† 

u' ' '= uan1 + va n2 + wa n3 ,

† 

v ' '' = ub n1 + vb n2 + wbn 3 ,
and,

† 

w' ' '= ug n1 + vgn 2 + wg n3 ,
with,

† 

an1 = cosy cosf ,

† 

an2 = siny cosf ,

† 

an3 = sinf ,

† 

bn1 = - siny cosW - cosy sinf sinW,

† 

bn 2 = cosy cosW - siny sinf sinW,

† 

bn 3 = cosf sinW ,
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† 

g n1 = siny sinW -cosy sinf cosW,

† 

g n2 = -cosy cosW - siny sinf cosW,
and,

† 

g n3 = cosf cosW .

The parameterizations apply to the rotated coordinate system, but we also need to be able
to describe the turbulent winds in the unrotated coordinate system. The above
relationships can be used to describe the Reynolds stresses in the unrotated system in
terms of the stresses and mean winds in the rotated system:

† 

uf
2 = u' ' ' f

2a1
2 + s2a1

2 + 2u'' ' f v ' '' fa1a2 + 2u' ' ' f w' ' ' fa1a 3 +

† 

v ' '' f
2a 2

2 + 2v '' ' f w ' ' ' fa 2a3

† 

+

       

† 

w' ' ' f
2a 3

2 - u
2
,

† 

v f
2 = u' ' ' f

2b1
2 + s2b1

2 + 2u' ' ' f v ' '' f b1b2 + 2u' ' ' f w ' '' f b1b3 + 2v ' ' ' f w ' ' ' f b2b 3 + v ' ' ' f
2b2

2 +

       

† 

w' ' ' f
2 b3

2 - v
2
,

† 

wf
2 = u' ' ' f

2g1
2 + s2g1

2 + 2u' '' f v ' ' ' f g1g 2 + 2u'' ' f w' ' ' fg1g 3 + v' ' ' f
2 g 2

2 + 2v ' ' ' f w ' '' f g 2g 3 +

        

† 

w' ' ' f
2 g 3

2 - w
2
,

† 

uf v f = u' ' ' f
2a1b1 + s2a1b1 + u' ' ' f v '' ' f a1b2 +a 2b1( ) + u'' ' f w ' ' ' f a1b3 + a3b1( ) +

† 

v ' '' f
2a 2b 2 +

            

† 

v ' '' f w ' ' ' f a 2b3 +a 3b 2( ) + w'' ' f
2a3b3 - uv ,

† 

uf w f = u' ' ' f
2a1g1 + s2a1g1 + u'' ' f v ' ' ' f a1g 2 +a 2g1( ) + u' ' ' f w ' ' ' f a1g 3 + a3g1( ) + v '' ' f

2a 2g 2 +

            

† 

v ' '' f w ' ' ' f a 2g 3 +a 3g 2( ) + w ' '' f
2a 3g 3 - uv ,

and,

† 

v f wf = u' ' ' f
2 b1g1 + s2b1g1 + u'' ' f v ' ' ' f b1g 2 + b2g1( ) + u' '' f w' ' ' f b1g 3 + b3g1( ) + v' ' ' f

2b 2g 2 +

          

† 

v ' '' f w ' ' ' f b2g 3 + b3g 2( ) + w' '' f
2b3g 3 - vw ,

with the subscript 

† 

f  denoting a fluctuating or random component.

We use similar relationships to describe Reynolds stresses in the rotated system:

† 

u' ' ' f
2 = uf

2a n1
2 + u

2
a n1

2 + 2ufv fan1a n2 + 2uvan1a n2 + 2uf wfa n1an 3 +

† 

2uwan1a n3 +

      

† 

v f
2an 2

2 + v
2
an 2

2 + 2v f wfa n2a n3 + 2vwa n2a n3 + wf
2a n3

2 + w
2
a n3

2 - s2 ,

† 

v ' '' f
2 = uf

2b n1
2 + u

2
b n1

2 + 2uf v fb n1bn 2 + 2uvbn1bn 2 + 2uf wf bn1bn 2 +

† 

2uwb n1bn 3 +

          

† 

v f
2b n2

2 + v
2
bn2

2 + 2v f wfb n2bn3 + 2vwbn2bn3 + w f
2bn 3

2 + w
2
b n3

2 ,

† 

w' ' ' f
2 = uf

2g n1
2 + u

2
g n1

2 + 2uf vf g n1g n 2 + 2uvg n1g n 2 + 2uf w fg n1g n3 + 2uwg n1g n 3 +

          

† 

v f
2g n 2

2 + v
2
g n 2

2 + 2v f wf g n2g n3 + 2vwg n2g n3 + wf
2g n3

2 + w
2
g n3

2 ,

and finally (the other shear stresses are not needed):
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† 

u' ' ' f w'' ' f = uf
2a n1g n1 + u

2
an1g n1 + uf v f an1g n2 +a n2g n1( ) + uv an1g n2 +a n2g n1( ) +

                 

† 

uf w f an1g n3 +a n3g n1( ) + uw an1g n3 +a n3g n1( ) + v f
2an 2g n 2 + v

2
an 2g n2 +

                 

† 

v f wf a n2g n3 +a n3g n 2( ) + v w an 2g n 3 + an3g n2( ) + w f
2an 3g n 3 + w

2
an 3g n3 .

The equation for the dissipation remains:

e =
u*

3

k dwall + z0( )
,

except that dwall  replaces z where dwall  is the smaller of zeff  and 

† 

dwall .

The analogy between the treatment of ground based shear and horizontal shear is flawed.
In the case of a material surface the eddy-size is limited by the presence of the surface
and u*  is calculated for the grid-cell nearest the surface. In the horizontal shear case there
may or may not be a material surface and u*  is calculated cell by cell. In the first version
of the model, the value of 

† 

u*  associated with vertical wind-shear was based on the wind-
shear at the ground or the rooftop and the same value was used for all heights above the
ground or the roof.
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Interpolation of winds to particle positions

We estimate the wind at position (x,y,z) by using an inverse distance interpolation among
the neighboring grid-cell center values. We have:

i =
x

dx
+1,

j =
y

dy
+1,

and,
k =

z
dz

+ 1,

so that, the expression for the interpolated u-component of the wind is:

ux ,y ,z =

u(ii, jj,kk )

xii - x( )2
+ yjj - y( )

2
+ zkk - z( )2[ ]kk =k -1

kk =k +1

Â
jj = j -1

jj = j +1

Â
ii =i -1

ii =i +1

Â

1

xii - x( )2
+ yjj - y( )2

+ zkk - z( )2[ ]kk =k -1

kk =k +1

Â
jj = j -1

jj = j +1

Â
ii =i -1

ii =i +1

Â
,

with similar expressions for v and w components. The above expression applies when
there are no walls between the point (x,y,z) and any of the adjacent grid-cell centers. If
there is a wall, for example, in the plus x direction, the distance used in the inverse weight
would be:

dx + = i * dx - x,

instead of:

di +1, j ,k Æ x ,y ,z = xi +1 - x( )2
+ yj - y( )2

+ zk - z( )2[ ],
with:

xii = ii -1( ) • dx + .5• dx,
yjj = jj -1( ) • dy + .5 • dy,

and:
zkk = (kk - 1) •dz + .5 • dz.

The wind at the wall is identically zero and we are using the perpendicular distance to the
wall that lies halfway between grid cell centers, while we use the distance to grid cell
centers for points without intervening walls.
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Treatment of reflection by walls

The approach to reflection is analogous to billiard ball type reflections. We estimate that
reflection is required when we find that icellflag(ii,jj,kk ) is one, where the grid indices ii,
jj, and kk refer to the position (xx,yy,zz) after updating. The preceding position is (x,y,z)
with associated indices i,j, and k; we know that icellflag(i,j,k) is zero, since the particle
must begin in the atmosphere. If the change of only one index to its former value is
sufficient to make icellflag(i,jj,kk) zero, we have wall reflection. For example if
icellflag(i,jj,kk) is zero, we need to reflect the particle parallel to the x-axis. First, we
define:

isign =
(ii - i)

ii - i( )2
,

and,
imax = Max(ii, i),

and then estimate the distance from the new position within to wall to the surface of the
wall as:

dxwall = isign x - imax -1( )dx[ ].

The new particle position after reflection is then:

xref = x - 2isigndxwall.

We also reverse ¢ u , so that:

¢ u ref = -isign ¢ u 2 .

Similar equations apply to the case where the reflection is from a wall perpendicular to
the y-axis or from a floor. However, we can also have the case where there is a corner
reflection so that both the i and j indices must change in the time step for the particle to
reach a wall or perhaps all three indices must change in the case of a particle approaching
the corner of a roof from above. In each case, we estimate the penetration into the wall in
the various directions and reflect about the direction for which the penetration is greatest.
In this instance we define:

isign =
(ii - i)
ii - i( )2

,

imax = Max(ii, i),

jsign =
( jj - j )

jj - j( )2
,

jmax = Max( jj, j),
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ksign =
kk - k( )
kk - k( )2

,

and,
kmax = Max(kk,k ).

The penetration into the wall in each direction is then:

dxwall = isign x - imax -1( )dx[ ] ,
dywall = jsign y - (jmax -1)dy[ ],

and,
dzwall = ksign z - kmax -1( )dz[ ].

Once the direction of the greatest penetration is known, the reflection in that direction is
estimated in a fashion similar to that described above for a wall reflection in the x-
direction.

Concentration estimation

Average concentrations are estimated by:

† 

ci, j ,k =
QDtc

ntot dxbdybdzb tave
Â ,

where the sum is over all particles that are found within the sampling box i,j,k during the
sampling time 

† 

tave . ntot  is the total number of particles released during the computations,
dxb  is the sampling box size in the x – direction, dyb  is the sampling box size in the y –
direction, dzb  is the sampling box size in the z – direction, and 

† 

Dtc is the time between
particle collection for concentration estimation.
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Model Test Case

We chose to simulate a wind-tunnel experiment carried out by EPA investigators (Ohba,
Synder, and Lawson, 1993). The geometry of the release is shown in figure 1.

The study examined the concentrations associated with releases around one or two
modeled high-rise buildings. We have made comparisons with the single building case
and we have looked at a release a short distance from the backside of the building not far
from the base of the building. Measurements of normalized concentrations,

were available for the backside of the building and for a plane passing through the
building centerline and parallel to the x-axis. The simulated building had a base of 12 by
12 meters and was 36 meters tall. We used winds of 3.5 m/s in our simulations. We
modeled a release at 3 meters above ground and 6 meters behind the back wall.  The
release was simulated as particles released randomly from the surface of a sphere of
radius .30 meters. This is a particularly challenging geometry, because of the rapid
variations in the mean wind that are found in the wake of the building. In addition, the
wall-effects play a major role because the release begins near the wall and drifts toward
it. This simulation was compared to measured concentrations on the back wall of the
highrise and to measured concentrations along the axis.

† 

cn =Uh 2 c
Q

S

U

Figure2. Geometry of the high-rise wind tunnel experiment simulation. The source
location is downwind of the 36 meter high building that has a base of 12 meters by
12 meters.
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Model Evolution

The initial version of the code exhibited several deficiencies when the test case was run.
First, the code showed trapped particles so that it took a 16-minute simulation to produce
a stable set of 2 minute-averaged concentrations for comparison with the measurements.
In addition to the trapped particles, the model exhibited very compact concentration
fields so that the concentration gradients were much greater than those found in the
measured fields. One of the first efforts to improve the code focused on the dissipation

e =
u*

3

k dwall + z0( )
,

where 

† 

dwall  was modified to be the shortest distance to a wall rather than the distance to a
wall in the crosswind direction. This change did not produce major changes in the
concentration fields. The turbulence was also very low in the region of the release
because the wind speeds were low.

The next improvement in the code focused on the use of local gradients everywhere so
that friction velocity

† 

u*  is estimated by:

Figure 3. Wind vectors at 3 meters above the ground for the high-rise simulation.
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† 

u* = lz
∂u
∂z

,

with 

† 

lz  the height above ground multiplied by the von Karman constant 

† 

k . Where there
are flow reversals, we use

† 

lz = k u
∂u
∂z

Ê 

Ë 

Á 
Á 
Á 
Á Á 

ˆ 

¯ 

˜ 
˜ 
˜ 
˜ ˜ 

,

if it provides the smaller of the two expressions. The normal stresses are:

† 

t1 1 =s u
2 = t 2 2 = sv

2 = 4u*
2 ;  

† 

t 3 3 =1.69u*
2 ,

while the kinematic Reynolds shear stress, 

† 

t1 3, and the dissipation, e , are:

† 

t1 3 = lz
∂u
∂z

, 

† 

e =
u*

3

lz
.

An additional term 

† 

u∂u
∂x

dt  was added to 

† 

du  to account for gradients along the mean

wind. In addition the formulation of gradients was improved by the use of centered
differences as opposed to backward differences. Also a limiting expression for
derivatives of sigmas near a wall was developed, so that for approaching a vertical wall
we would have:

† 

sy ª ky1.3
ky

ly
∂u
∂z

+
∂u
∂y

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ ª ky ∂u

∂y

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 

since u is zero at the wall, and consequently

† 

∂s y

∂y
ª1.3k u

y
,

which approaches a constant near the wall. Furthermore, we set a minimum 

† 

u*  of 0.03
meters per second. We also modified the way in which the integration of the
accelerations is carried out over the time step. The turbulent winds are referenced to the
local coordinate system rather than the fixed coordinate system. The earlier form of the
code used the random velocity at the start of the current time step as the value at the end
of the last time step. However, as the winds are changing rapidly with distance the local
coordinate system is changing orientation also. Consequently, the random component
from the previous time step is referenced to a different coordinate system than that of the
current time step. The current model converts random velocities to the fixed coordinate
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system and then rotates them into the current local coordinate system before the
integration is performed.

Treatment of Non-Local Mixing

Large-eddy simulations of flows around buildings exhibit eddies that sweep contaminants
across the cavities and wakes of buildings. The measured concentrations suggest that
there is considerable mixing in the wakes of buildings. This process was conceptualized
as driven by velocity differences between the winds passing by the sides of buildings and
the light winds along the axis of the wake or eddy. Two situations were considered,
mixing produced by vertical axis eddies that mixed materials horizontally, and mixing
produced by eddies that brought material down from the higher winds above the cavity or
wake. In the case of horizontal mixing, the length scale,

† 

lg , was chosen as the half-width
of the wake or cavity and the velocity difference was calculated by comparing the winds
at the edge of the building with those along the centerline of the wake or cavity:

† 

Duref d,z( ) = sw
2+

(- l
2

,z) - sa (d,z)

Fig. 4. Geometry for the deduction of 

† 

u*g  for horizontal, non-local mixing.

uref

Points for wake
∆u(d,z)

Points for bow
∆u(d,z)

Wake mixing regionBow mixing
region
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where 

† 

sw
2+

 is the wind speed just outside the building at its center in the lengthwise

direction and 

† 

sa (d,z)  is the speed on the axis of the wake or cavity at a distance 

† 

d  from
the nearest wall of the building. Non-local mixing is assumed to produce a non-local
friction velocity of:

† 

u*g = kDuref (d,z) ,

for all points inside the wake or cavity that satisfy:

† 

s(d, y,z) £ .8* Duref (d,z) ,

with y measured transverse to the downwind axis of the building. The effective width of
the building and the length of the wake or eddy provide the region for which non-local
mixing is considered. The parameters describing the wake or eddy are provided by
QUIC-URB output as:

† 

dw = 3lr

with 

† 

dw  the distance from the back wall of the building to the end of the wake, and 

† 

Lfx

the distance in the x-direction to the upstream limit of the front eddy, and 

† 

Lfy  the distance
in the y-direction to the upstream limit of the cavity.  Figure 4 illustrates the geometry
The coordinate system relevant to horizontal mixing is assumed to be aligned with the
mean wind. In the coordinate system aligned with the mean wind we use:

† 

ugf
2 = 4u*g

2 ,

† 

wgf
2 = 4u*g

2 ,
and

† 

vgf
2 =1.69u*g

2 .

For the shear stresses we use:

† 

ugf vgf = -
y - ya

yw
2+

u*g
2

and

† 

ugf wgf = vgf wgf = 0 .

For mixing in the vertical direction (eddies whose axis is horizontal), the reference wind
speed is that directly above the point of interest and it is compared to a zero speed at the
ground or rooftop. We describe the friction velocity as:

† 

u*gz (d,y) = sht +(d, y)
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with 

† 

sht+(d,y) , the mean speed at the height of the building top plus one cell at a distance
d from the building wall and a transverse distance y. The relevant stresses are:

† 

ugf
2 = 4u*gz

2 ,

† 

vgf
2 = 4u*gz

2 ,

† 

wgf
2 =1.69u*gz

2 ,

† 

ugf wgf = -u*gz
2 ,

and,

† 

ugf vgf = vgf wgf = 0 .

The choice between horizontal mixing and vertical mixing is made based on the largest
average gradient of the mean wind. Specifically if:

† 

Duref (d,z)
wteff

2
≥

s(d,y, z)
hteff

,

the mixing is dominated by the horizontal mixing. Otherwise, vertical mixing is assumed.
The same point in the wake or eddy may be influenced by more than one building and we
choose the building that has the largest 

† 

u*g .

The stresses obtained by this approach are appropriate to the mean wind, so that we have
to transform the values into the original coordinate system. The relevant relationships are:

† 

w = arctan vls

uls

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ ,

† 

u = ug cos(w) + vg sin(w) ,

† 

v = -ug sin(w) + vg cos(w) ,

† 

uf
2 = ugf

2 cos2 (w) + u
2
cos2(w) -2ugf vgf cos(w)sin(w) -2uv cos(w)sin(w)

† 

+

† 

vgf
2 sin2 (w)

† 

+

       

† 

v
2
sin2 (w) - u

2
,

† 

v f
2 = ugf

2 sin2(w) + u
2
sin2(w) + 2ugf vgf cos(w)sin(w) + 2uv cos(w)sin(w) + vgf

2 cos2 (w) +

       

† 

v
2
cos2 (w) - v

2

† 

uf v f = ugf
2 cos(w)sin(w) + u

2
cos(w) sin(w) + ugf vgf cos2 (w) - sin2 (w)( ) + uv cos2(w) - sin2 (w)( ) -

† 

vgf
2 sin(w)cos(w) -v

2
sin(w)cos(w) - uv ,

† 

uf w f = ugf wgf cos(w) + uw cos(w) - vgf wgf sin(w) - uw sin(w) - uw ,
and,

† 

v f wf = ugf vgf sin(w) + uwsin(w) + vgf wgf cos(w) + vw cos(w) - vw .

With 

† 

vls , the large scale v-component of the mean wind and 

† 

uls  the large scale u-
component of the mean wind.
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Model Performance

The addition of the non-local mixing made a major improvement in the code. The
concentration fields are much better matched to the measured concentrations, as shown in
Figure 5. The source location is in red while the black dots show the sampling grid.

The pattern of the simulated, local-mixing concentrations is much different than the
measurements, while the non-local mixing simulation gives much better agreement. The
highest measured concentrations at the back wall are 116 normalized, while the
normalized concentration for the local-gradient simulation is 6144. The non-local
simulation produces a normalized, back wall maximum concentration of 177.

Local-mixing Measured Non-local mixing

† 

Y /W

† 

Y /W

† 

Y /W
Figure 5. Comparison between measured (center) and simulated (left –local mixing and
right non-local mixing) along the back wall of the highrise building. The source location
is indicated by the red dot, while the black dots report the locations of the
measurements.
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The down-axis measurements and simulations show a similar behavior.  Figure 6 shows
the measured concentrations while Figure 7 displays the concentrations estimated with a
non-local mixing model.  The estimated concentrations are similar to those found in the
measurements. Figure 8 depicts the estimated concentrations using the local-mixing
version of the model. Once again the local-mixing version produces much different
concentrations. The highest measured, normalized concentration is 508, while the non-
local mixing model produces 726 at a point near the source position. The local mixing
model produces a high of 6771 with concentrations as high as 6172 at the back wall of
the building

Figure 6. Measured, normalized concentrations along the centerline of the building
displayed as a function of the down wind distance divided by the building height. The
source location is shown by the red dot, while black triangles show the measurement
locations.
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Figure 7. Estimated concentrations downwind of the building along the building
centerline produced by the non-local mixing version of the model.

Figure 8. Estimated down-axis concentrations produced by a local-mixing version
of the model.

X/H

Z/H
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